What is SharePoint and Role of SharePoint server in a LAN network

What is SharePoint?

SharePoint is an extensible web based platform which contains various products and technologies aimed at development of corporate portals. These products and technologies are referred to as SharePoint Products and Technologies.It allows individuals in an organization to easily create and manage their own collaborative Websites

  • Simplifies how people find and share information across boundaries and enabling better informed decisions
  • Seamlessly integrates with Windows and MS Office
    SharePoint not refer to a specific product or technology
  • Using the word Microsoft SharePoint is like using the word Microsoft Office

Role of SharePoint Server in a LAN Network.

SharePoint 2013

High level features of SharePoint Products and Technologies

  • Rich UI
    • Easy site editing and branding
    • Ribbon Interface
  • Better Site Provisioning
    • Better Versioning
    • Document Libraries
      • Document Column (Attachments)
      • Check in / Check out
      • Document Workflow (Approval)
      • Document View within browser
      • Permissions
  • Better Document Management
    • Quick development
    • No DBA required
  • Social Computing: Enables advanced collaboration within the SharePoint environment Supports Wikis, Blogs, Forums etc..
  • Automated Email and SMS Alerts
  • Built In Indexing & Search Engine
  • Seamless integration with Active Directory and other authentication providers
  • Integration of MS-Office Products
  • Reports in PDF, Word and other formats
  • Collaboration
    • Communication
    • Task Manager
  • Mobile Compatibility: Automatic Mobile Browser Redirection, Push notifications.

Software Development Life Cycle (SDLC)

What is Software Development Life Cycle (SDLC)

SDLC Model

SDLC is a process followed for a software project, within a software organization. It consists of a detailed plan describing how to develop, maintain, replace and alter or enhance specific software. The life cycle defines a methodology for improving the quality of software and the overall development process.

The following figure is a graphical representation of the various stages of a typical SDLC.
sdlc process

A typical Software Development life cycle consists of the following stages:

Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is performed by the senior members of the team with inputs from the customer, the sales department, market surveys and domain experts in the industry. This information is then used to plan the basic project approach and to conduct product feasibility study in the economical, operational, and technical areas.

Planning for the quality assurance requirements and identification of the risks associated with the project is also done in the planning stage. The outcome of the technical feasibility study is to define the various technical approaches that can be followed to implement the project successfully with minimum risks.

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and document the product requirements and get them approved from the customer or the market analysts. This is done through .SRS. . Software Requirement Specification document which consists of all the product requirements to be designed and developed during the project life cycle.

Stage 3: Designing the product architecture

SRS is the reference for product architects to come out with the best architecture for the product to be developed. Based on the requirements specified in SRS, usually more than one design approach for the product architecture is proposed and documented in a DDS – Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various parameters as risk assessment, product robustness, design modularity , budget and time constraints , the best design approach is selected for the product.

A design approach clearly defines all the architectural modules of the product along with its communication and data flow representation with the external and third party modules (if any). The internal design of all the modules of the proposed architecture should be clearly defined with the minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built. The programming code is generated as per DDS during this stage. If the design is performed in a detailed and organized manner, code generation can be accomplished without much hassle.

Developers have to follow the coding guidelines defined by their organization and programming tools like compilers, interpreters, debuggers etc are used to generate the code. Different high level programming languages such as C, C++, Pascal, Java, and PHP are used for coding. The programming language is chosen with respect to the type of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the testing activities are mostly involved in all the stages of SDLC. However this stage refers to the testing only stage of the product where products defects are reported, tracked, fixed and retested, until the product reaches the quality standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in the appropriate market. Sometime product deployment happens in stages as per the organizations. business strategy. The product may first be released in a limited segment and tested in the real business environment (UAT- User acceptance testing).

Then based on the feedback, the product may be released as it is or with suggested enhancements in the targeting market segment. After the product is released in the market, its maintenance is done for the existing customer base.

Visit Best Software Technologies Online Training with Real time Projects

Constraints in SQL server

Constraints

A constraint is a property assigned to a column or the set of columns in a table that prevents certain types of inconsistent data values from being placed in the column(s). Constraints are used to enforce the data integrity. This ensures the accuracy and reliability of the data in the database. The following categories of the data integrity exist:

  • Entity Integrity
  • Domain Integrity
  • Referential integrity
  • User-Defined Integrity

Entity Integrity ensures that there are no duplicate rows in a table.

Domain Integrity enforces valid entries for a given column by restricting the type, the format, or the range of possible values.

Referential integrity ensures that rows cannot be deleted, which are used by other records (for example, corresponding data values between tables will be vital).

User-Defined Integrity enforces some specific business rules that do not fall into entity, domain, or referential integrity categories.

Each of these categories of the data integrity can be enforced by the appropriate constraints. Microsoft SQL Server supports the following constraints:

  • PRIMARY KEY
  • UNIQUE
  • FOREIGN KEY
  • CHECK
  • NOT NULL

A PRIMARY KEY constraint is a unique identifier for a row within a database table. Every table should have a primary key constraint to uniquely identify each row and only one primary key constraint can be created for each table. The primary key constraints are used to enforce entity integrity.

A UNIQUE constraint enforces the uniqueness of the values in a set of columns, so no duplicate values are entered. The unique key constraints are used to enforce entity integrity as the primary key constraints.

A FOREIGN KEY constraint prevents any actions that would destroy link between tables with the corresponding data values. A foreign key in one table points to a primary key in another table. Foreign keys prevent actions that would leave rows with foreign key values when there are no primary keys with that value. The foreign key constraints are used to enforce referential integrity.

A CHECK constraint is used to limit the values that can be placed in a column. The check constraints are used to enforce domain integrity.

A NOT NULL constraint enforces that the column will not accept null values. The not null constraints are used to enforce domain integrity, as the check constraints.

Visit for SQL server Online Training